Abstract:Diffusion probabilistic models have made their way into a number of high-profile applications since their inception. In particular, there has been a wave of research into using diffusion models in the prediction and design of biomolecular structures and sequences. Their growing ubiquity makes it imperative for researchers in these fields to understand them. This paper serves as a general overview for the theory behind these models and the current state of research. We first introduce diffusion models and discuss common motifs used when applying them to biomolecules. We then present the significant outcomes achieved through the application of these models in generative and predictive tasks. This survey aims to provide readers with a comprehensive understanding of the increasingly critical role of diffusion models.
Abstract:Protein quality assessment (QA) by ranking and selecting protein models has long been viewed as one of the major challenges for protein tertiary structure prediction. Especially, estimating the quality of a single protein model, which is important for selecting a few good models out of a large model pool consisting of mostly low-quality models, is still a largely unsolved problem. We introduce a novel single-model quality assessment method DeepQA based on deep belief network that utilizes a number of selected features describing the quality of a model from different perspectives, such as energy, physio-chemical characteristics, and structural information. The deep belief network is trained on several large datasets consisting of models from the Critical Assessment of Protein Structure Prediction (CASP) experiments, several publicly available datasets, and models generated by our in-house ab initio method. Our experiment demonstrate that deep belief network has better performance compared to Support Vector Machines and Neural Networks on the protein model quality assessment problem, and our method DeepQA achieves the state-of-the-art performance on CASP11 dataset. It also outperformed two well-established methods in selecting good outlier models from a large set of models of mostly low quality generated by ab initio modeling methods. DeepQA is a useful tool for protein single model quality assessment and protein structure prediction. The source code, executable, document and training/test datasets of DeepQA for Linux is freely available to non-commercial users at http://cactus.rnet.missouri.edu/DeepQA/.