Abstract:Deep learning has become the leading approach to assisted target recognition. While these methods typically require large amounts of labeled training data, domain adaptation (DA) or transfer learning (TL) enables these algorithms to transfer knowledge from a labelled (source) data set to an unlabelled but related (target) data set of interest. DA enables networks to overcome the distribution mismatch between the source and target that leads to poor generalization in the target domain. DA techniques align these distributions by minimizing a divergence measurement between source and target, making the transfer of knowledge from source to target possible. While these algorithms have advanced significantly in recent years, most do not explicitly leverage global data manifold structure in aligning the source and target. We propose to leverage global data structure by applying a topological data analysis (TDA) technique called persistent homology to TL. In this paper, we examine the use of persistent homology in a domain adversarial (DAd) convolutional neural network (CNN) architecture. The experiments show that aligning persistence alone is insufficient for transfer, but must be considered along with the lifetimes of the topological singularities. In addition, we found that longer lifetimes indicate robust discriminative features and more favorable structure in data. We found that existing divergence minimization based approaches to DA improve the topological structure, as indicated over a baseline without these regularization techniques. We hope these experiments highlight how topological structure can be leveraged to boost performance in TL tasks.
Abstract:Object recognition is a key enabler across industry and defense. As technology changes, algorithms must keep pace with new requirements and data. New modalities and higher resolution sensors should allow for increased algorithm robustness. Unfortunately, algorithms trained on existing labeled datasets do not directly generalize to new data because the data distributions do not match. Transfer learning (TL) or domain adaptation (DA) methods have established the groundwork for transferring knowledge from existing labeled source data to new unlabeled target datasets. However, current DA approaches assume similar source and target feature spaces and suffer in the case of massive domain shifts or changes in the feature space. Existing methods assume the data are either the same modality, or can be aligned to a common feature space. Therefore, most methods are not designed to support a fundamental domain change such as visual to auditory data. We propose a novel deep learning framework that overcomes this limitation by learning separate feature extractions for each domain while minimizing the distance between the domains in a latent lower-dimensional space. The alignment is achieved by considering the data manifold along with an adversarial training procedure. We demonstrate the effectiveness of the approach versus traditional methods with several ablation experiments on synthetic, measured, and satellite image datasets. We also provide practical guidelines for training the network while overcoming vanishing gradients which inhibit learning in some adversarial training settings.