Abstract:The automation of analog integrated circuit (IC) design remains a longstanding challenge, primarily due to the intricate interdependencies among physical layout, parasitic effects, and circuit-level performance. These interactions impose complex constraints that are difficult to accurately capture and optimize using conventional design methodologies. Although recent advances in machine learning (ML) have shown promise in automating specific stages of the analog design flow, the development of holistic, end-to-end frameworks that integrate these stages and iteratively refine layouts using post-layout, parasitic-aware performance feedback is still in its early stages. Furthermore, progress in this direction is hindered by the limited availability of open, high-quality datasets tailored to the analog domain, restricting both the benchmarking and the generalizability of ML-based techniques. To address these limitations, we present OSIRIS, a scalable dataset generation pipeline for analog IC design. OSIRIS systematically explores the design space of analog circuits while producing comprehensive performance metrics and metadata, thereby enabling ML-driven research in electronic design automation (EDA). In addition, we release a dataset consisting of 87,100 circuit variations generated with OSIRIS, accompanied by a reinforcement learning (RL)-based baseline method that exploits OSIRIS for analog design optimization.
Abstract:Side-channel attacks allow extracting secret information from the execution of cryptographic primitives by correlating the partially known computed data and the measured side-channel signal. However, to set up a successful side-channel attack, the attacker has to perform i) the challenging task of locating the time instant in which the target cryptographic primitive is executed inside a side-channel trace and then ii)the time-alignment of the measured data on that time instant. This paper presents a novel deep-learning technique to locate the time instant in which the target computed cryptographic operations are executed in the side-channel trace. In contrast to state-of-the-art solutions, the proposed methodology works even in the presence of trace deformations obtained through random delay insertion techniques. We validated our proposal through a successful attack against a variety of unprotected and protected cryptographic primitives that have been executed on an FPGA-implemented system-on-chip featuring a RISC-V CPU.