Abstract:This paper presents the development and application of an AI-based method for particle track identification using scintillating fibres read out with imaging sensors. We propose a variational autoencoder (VAE) to efficiently filter and identify frames containing signal from the substantial data generated by SPAD array sensors. Our VAE model, trained on purely background frames, demonstrated a high capability to distinguish frames containing particle tracks from background noise. The performance of the VAE-based anomaly detection was validated with experimental data, demonstrating the method's ability to efficiently identify relevant events with rapid processing time, suggesting a solid prospect for deployment as a fast inference tool on hardware for real-time anomaly detection. This work highlights the potential of combining advanced sensor technology with machine learning techniques to enhance particle detection and tracking.
Abstract:Image decomposition plays a crucial role in various computer vision tasks, enabling the analysis and manipulation of visual content at a fundamental level. Overlapping images, which occur when multiple objects or scenes partially occlude each other, pose unique challenges for decomposition algorithms. The task intensifies when working with sparse images, where the scarcity of meaningful information complicates the precise extraction of components. This paper presents a solution that leverages the power of deep learning to accurately extract individual objects within multi-dimensional overlapping-sparse images, with a direct application in high-energy physics with decomposition of overlaid elementary particles obtained from imaging detectors. In particular, the proposed approach tackles a highly complex yet unsolved problem: identifying and measuring independent particles at the vertex of neutrino interactions, where one expects to observe detector images with multiple indiscernible overlapping charged particles. By decomposing the image of the detector activity at the vertex through deep learning, it is possible to infer the kinematic parameters of the identified low-momentum particles - which otherwise would remain neglected - and enhance the reconstructed energy resolution of the neutrino event. We also present an additional step - that can be tuned directly on detector data - combining the above method with a fully-differentiable generative model to improve the image decomposition further and, consequently, the resolution of the measured parameters, achieving unprecedented results. This improvement is crucial for precisely measuring the parameters that govern neutrino flavour oscillations and searching for asymmetries between matter and antimatter.
Abstract:In this article, we use artificial intelligence algorithms to show how to enhance the resolution of the elementary particle track fitting in inhomogeneous dense detectors, such as plastic scintillators. We use deep learning to replace more traditional Bayesian filtering methods, drastically improving the reconstruction of the interacting particle kinematics. We show that a specific form of neural network, inherited from the field of natural language processing, is very close to the concept of a Bayesian filter that adopts a hyper-informative prior. Such a paradigm change can influence the design of future particle physics experiments and their data exploitation.