Abstract:A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph $F$ into a large network $\mathcal{G}$. When $\mathcal{G}$ is the complete graph with $q$ nodes, this becomes the well-known problem of sampling uniform $q$-colorings of $F$. We propose two complementary MCMC algorithms for sampling a random graph homomorphisms and establish bounds on their mixing times and concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neigborhood sampling. Various time averages of the MCMC trajectory give us real-, function-, and network-valued computable observables, including well-known ones such as homomorphism density and average clustering coefficient. One of the main observable we propose is called the conditional homomorphism density profile, which reveals hierarchical structure of the network. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut distance between networks. We also provide various examples and simulations demonstrating our framework through synthetic and real-world networks. For instance, we apply our framework to analyze Word Adjacency Networks of a 45 novels data set and propose an authorship attribution scheme using motif sampling and conditional homomorphism density profiles.
Abstract:A number of real world problems in many domains (e.g. sociology, biology, political science and communication networks) can be modeled as dynamic networks with nodes representing entities of interest and edges representing interactions among the entities at different points in time. A common representation for such models is the snapshot model - where a network is defined at logical time-stamps. An important problem under this model is change point detection. In this work we devise an effective and efficient three-step-approach for detecting change points in dynamic networks under the snapshot model. Our algorithm achieves up to 9X speedup over the state-of-the-art while improving quality on both synthetic and real world networks.