Abstract:In this paper, we investigate the two most popular families of deep neural architectures (i.e., ResNets and Inception nets) for the autonomous driving task of steering angle prediction. This work provides preliminary evidence that Inception architectures can perform as well or better than ResNet architectures with less complexity for the autonomous driving task. Primary motivation includes support for further research in smaller, more efficient neural network architectures such that can not only accomplish complex tasks, such as steering angle predictions, but also produce less carbon emissions, or, more succinctly, neural networks that are more environmentally friendly. We look at various sizes of ResNet and InceptionNet models to compare results. Our derived models can achieve state-of-the-art results in terms of steering angle MSE.