Abstract:With the increasing number of data collectors such as smartphones, immense amounts of data are available. Federated learning was developed to allow for distributed learning on a massive scale whilst still protecting each users' privacy. This privacy is claimed by the notion that the centralized server does not have any access to a client's data, solely the client's model update. In this paper, we evaluate a novel attack method within regular federated learning which we name the First Dense Layer Attack (Fidel). The methodology of using this attack is discussed, and as a proof of viability we show how this attack method can be used to great effect for densely connected networks and convolutional neural networks. We evaluate some key design decisions and show that the usage of ReLu and Dropout are detrimental to the privacy of a client's local dataset. We show how to recover on average twenty out of thirty private data samples from a client's model update employing a fully connected neural network with very little computational resources required. Similarly, we show that over thirteen out of twenty samples can be recovered from a convolutional neural network update.
Abstract:With the increased attention and legislation for data-privacy, collaborative machine learning (ML) algorithms are being developed to ensure the protection of private data used for processing. Federated learning (FL) is the most popular of these methods, which provides privacy preservation by facilitating collaborative training of a shared model without the need to exchange any private data with a centralized server. Rather, an abstraction of the data in the form of a machine learning model update is sent. Recent studies showed that such model updates may still very well leak private information and thus more structured risk assessment is needed. In this paper, we analyze existing vulnerabilities of FL and subsequently perform a literature review of the possible attack methods targetingFL privacy protection capabilities. These attack methods are then categorized by a basic taxonomy. Additionally, we provide a literature study of the most recent defensive strategies and algorithms for FL aimed to overcome these attacks. These defensive strategies are categorized by their respective underlying defence principle. The paper concludes that the application of a single defensive strategy is not enough to provide adequate protection to all available attack methods.