Abstract:Deep neural network (NN) with millions or billions of parameters can perform really well on unseen data, after being trained from a finite training set. Various prior theories have been developed to explain such excellent ability of NNs, but do not provide a meaningful bound on the test error. Some recent theories, based on PAC-Bayes and mutual information, are non-vacuous and hence show a great potential to explain the excellent performance of NNs. However, they often require a stringent assumption and extensive modification (e.g. compression, quantization) to the trained model of interest. Therefore, those prior theories provide a guarantee for the modified versions only. In this paper, we propose two novel bounds on the test error of a model. Our bounds uses the training set only and require no modification to the model. Those bounds are verified on a large class of modern NNs, pretrained by Pytorch on the ImageNet dataset, and are non-vacuous. To the best of our knowledge, these are the first non-vacuous bounds at this large scale, without any modification to the pretrained models.
Abstract:Robustness and generalization ability of machine learning models are of utmost importance in various application domains. There is a wide interest in efficient ways to analyze those properties. One important direction is to analyze connection between those two properties. Prior theories suggest that a robust learning algorithm can produce trained models with a high generalization ability. However, we show in this work that the existing error bounds are vacuous for the Bayes optimal classifier which is the best among all measurable classifiers for a classification problem with overlapping classes. Those bounds cannot converge to the true error of this ideal classifier. This is undesirable, surprizing, and never known before. We then present a class of novel bounds, which are model-dependent and provably tighter than the existing robustness-based ones. Unlike prior ones, our bounds are guaranteed to converge to the true error of the best classifier, as the number of samples increases. We further provide an extensive experiment and find that two of our bounds are often non-vacuous for a large class of deep neural networks, pretrained from ImageNet.