Abstract:Federated learning allows multiple clients to collaboratively train a model without exchanging their data, thus preserving data privacy. Unfortunately, it suffers significant performance degradation under heterogeneous data at clients. Common solutions in local training involve designing a specific auxiliary loss to regularize weight divergence or feature inconsistency. However, we discover that these approaches fall short of the expected performance because they ignore the existence of a vicious cycle between classifier divergence and feature mapping inconsistency across clients, such that client models are updated in inconsistent feature space with diverged classifiers. We then propose a simple yet effective framework named Federated learning with Feature Anchors (FedFA) to align the feature mappings and calibrate classifier across clients during local training, which allows client models updating in a shared feature space with consistent classifiers. We demonstrate that this modification brings similar classifiers and a virtuous cycle between feature consistency and classifier similarity across clients. Extensive experiments show that FedFA significantly outperforms the state-of-the-art federated learning algorithms on various image classification datasets under label and feature distribution skews.