Abstract:Multimodal VAEs often struggle with generating high-quality outputs, a challenge that extends beyond the inherent limitations of the VAE framework. The core issue lies in the restricted joint representation of the latent space, particularly when complex modalities like images are involved. Feedforward decoders, commonly used for these intricate modalities, inadvertently constrain the joint latent space, leading to a degradation in the quality of the other modalities as well. Although recent studies have shown improvement by introducing modality-specific representations, the issue remains significant. In this work, we demonstrate that incorporating a flexible diffusion decoder specifically for the image modality not only enhances the generation quality of the images but also positively impacts the performance of the other modalities that rely on feedforward decoders. This approach addresses the limitations imposed by conventional joint representations and opens up new possibilities for improving multimodal generation tasks using the multimodal VAE framework. Our model provides state-of-the-art results compared to other multimodal VAEs in different datasets with higher coherence and superior quality in the generated modalities
Abstract:Multimodal Variational Autoencoders (VAEs) represent a promising group of generative models that facilitate the construction of a tractable posterior within the latent space, given multiple modalities. Daunhawer et al. (2022) demonstrate that as the number of modalities increases, the generative quality of each modality declines. In this study, we explore an alternative approach to enhance the generative performance of multimodal VAEs by jointly modeling the latent space of unimodal VAEs using score-based models (SBMs). The role of the SBM is to enforce multimodal coherence by learning the correlation among the latent variables. Consequently, our model combines the superior generative quality of unimodal VAEs with coherent integration across different modalities.