Abstract:This work focuses on reducing the computational cost of repeated video encodes by using a lower resolution clip as a proxy. Features extracted from the low resolution clip are used to learn an optimal lagrange multiplier for rate control on the original resolution clip. In addition to reducing the computational cost and encode time by using lower resolution clips, we also investigate the use of older, but faster codecs such as H.264 to create proxies. This work shows that the computational load is reduced by 22 times using 144p proxies. Our tests are based on the YouTube UGC dataset, hence our results are based on a practical instance of the adaptive bitrate encoding problem. Further improvements are possible, by optimising the placement and sparsity of operating points required for the rate distortion curves.
Abstract:In the past ten years there have been significant developments in optimization of transcoding parameters on a per-clip rather than per-genre basis. In our recent work we have presented per-clip optimization for the Lagrangian multiplier in Rate controlled compression, which yielded BD-Rate improvements of approximately 2\% across a corpus of videos using HEVC. However, in a video streaming application, the focus is on optimizing the rate/distortion tradeoff at a particular bitrate and not on average across a range of performance. We observed in previous work that a particular multiplier might give BD rate improvements over a certain range of bitrates, but not the entire range. Using different parameters across the range would improve gains overall. Therefore here we present a framework for choosing the best Lagrangian multiplier on a per-operating point basis across a range of bitrates. In effect, we are trying to find the para-optimal gain across bitrate and distortion for a single clip. In the experiments presented we employ direct optimization techniques to estimate this Lagrangian parameter path approximately 2,000 video clips. The clips are primarily from the YouTube-UGC dataset. We optimize both for bitrate savings as well as distortion metrics (PSNR, SSIM).