Abstract:Efficient routing is one of the key challenges of wireless networking for unmanned autonomous vehicles (UAVs) due to dynamically changing channel and network topology characteristics. Various well known mobile-ad-hoc routing protocols, such as AODV, OLSR and B.A.T.M.A.N. have been proposed to allow for proactive and reactive routing decisions. In this paper, we present a novel approach which leverages application layer knowledge derived from mobility control algorithms guiding the behavior of UAVs to fulfill a dedicated task. Thereby a prediction of future trajectories of the UAVs can be integrated with the routing protocol to avoid unexpected route breaks and packet loss. The proposed extension of the B.A.T.M.A.N. routing protocol by a mobility prediction component - called B.A.T.Mobile - has shown to be very effective to realize this concept. The results of in-depth simulation studies show that the proposed protocol reaches a distinct higher availability compared to the established approaches and shows robust behavior even in challenging channel conditions.