Abstract:At the 2017 Artificial and Computational Intelligence in Games meeting at Dagstuhl, Julian Togelius asked how to make spaces where every way of filling in the details yielded a good game. This study examines the possibility of enriching search spaces so that they contain very high rates of interesting objects, specifically game elements. While we do not answer the full challenge of finding good games throughout the space, this study highlights a number of potential avenues. These include naturally rich spaces, a simple technique for modifying a representation to search only rich parts of a larger search space, and representations that are highly expressive and so exhibit highly restricted and consequently enriched search spaces.
Abstract:Automatic generation of level maps is a popular form of automatic content generation. In this study, a recently developed technique employing the {\em do what's possible} representation is used to create open-ended level maps. Generation of the map can continue indefinitely, yielding a highly scalable representation. A parameter study is performed to find good parameters for the evolutionary algorithm used to locate high-quality map generators. Variations on the technique are presented, demonstrating its versatility, and an algorithmic variant is given that both improves performance and changes the character of maps located. The ability of the map to adapt to different regions where the map is permitted to occupy space are also tested.