Abstract:This paper discusses an interested party who wishes to influence the behavior of agents in a game (multi-agent interaction), which is not under his control. The interested party cannot design a new game, cannot enforce agents' behavior, cannot enforce payments by the agents, and cannot prohibit strategies available to the agents. However, he can influence the outcome of the game by committing to non-negative monetary transfers for the different strategy profiles that may be selected by the agents. The interested party assumes that agents are rational in the commonly agreed sense that they do not use dominated strategies. Hence, a certain subset of outcomes is implemented in a given game if by adding non-negative payments, rational players will necessarily produce an outcome in this subset. Obviously, by making sufficiently big payments one can implement any desirable outcome. The question is what is the cost of implementation? In this paper we introduce the notion of k-implementation of a desired set of strategy profiles, where k stands for the amount of payment that need to be actually made in order to implement desirable outcomes. A major point in k-implementation is that monetary offers need not necessarily materialize when following desired behaviors. We define and study k-implementation in the contexts of games with complete and incomplete information. In the latter case we mainly focus on the VCG games. Our setting is later extended to deal with mixed strategies using correlation devices. Together, the paper introduces and studies the implementation of desirable outcomes by a reliable party who cannot modify game rules (i.e. provide protocols), complementing previous work in mechanism design, while making it more applicable to many realistic CS settings.
Abstract:The model of a non-Bayesian agent who faces a repeated game with incomplete information against Nature is an appropriate tool for modeling general agent-environment interactions. In such a model the environment state (controlled by Nature) may change arbitrarily, and the feedback/reward function is initially unknown. The agent is not Bayesian, that is he does not form a prior probability neither on the state selection strategy of Nature, nor on his reward function. A policy for the agent is a function which assigns an action to every history of observations and actions. Two basic feedback structures are considered. In one of them -- the perfect monitoring case -- the agent is able to observe the previous environment state as part of his feedback, while in the other -- the imperfect monitoring case -- all that is available to the agent is the reward obtained. Both of these settings refer to partially observable processes, where the current environment state is unknown. Our main result refers to the competitive ratio criterion in the perfect monitoring case. We prove the existence of an efficient stochastic policy that ensures that the competitive ratio is obtained at almost all stages with an arbitrarily high probability, where efficiency is measured in terms of rate of convergence. It is further shown that such an optimal policy does not exist in the imperfect monitoring case. Moreover, it is proved that in the perfect monitoring case there does not exist a deterministic policy that satisfies our long run optimality criterion. In addition, we discuss the maxmin criterion and prove that a deterministic efficient optimal strategy does exist in the imperfect monitoring case under this criterion. Finally we show that our approach to long-run optimality can be viewed as qualitative, which distinguishes it from previous work in this area.