Abstract:Neural networks have been widely applied in the power system area. They can be used for better predicting input information and modeling system performance with increased accuracy. In some applications such as battery degradation neural network-based microgrid day-ahead energy scheduling, the input features of the trained learning model are variables to be solved in optimization models that enforce limits on the output of the same learning model. This will create a neural network-embedded optimization problem; the use of nonlinear activation functions in the neural network will make such problems extremely hard to solve if not unsolvable. To address this emerging challenge, this paper investigated different methods for linearizing the nonlinear activation functions with a particular focus on the widely used rectified linear unit (ReLU) function. Four linearization methods tailored for the ReLU activation function are developed, analyzed and compared in this paper. Each method employs a set of linear constraints to replace the ReLU function, effectively linearizing the optimization problem, which can overcome the computational challenges associated with the nonlinearity of the neural network model. These proposed linearization methods provide valuable tools for effectively solving optimization problems that integrate neural network models with ReLU activation functions.
Abstract:Battery energy storage system (BESS) can effectively mitigate the uncertainty of variable renewable generation. Degradation is un-preventable for batteries such as the most popular Lithium-ion battery (LiB). The main causes of LiB degradation are loss of Li-ions, loss of electrolyte, and increase of internal resistance which are hard to model and predict. In this paper, we propose a data driven method to predict the battery degradation per a given scheduled battery operational profile. Particularly, a neural net-work based battery degradation (NNBD) model is proposed to quantify the battery degradation with inputs of major battery degradation factors. When incorporating the proposed NNBD model into microgrid day-ahead scheduling (MDS), we can estab-lish a battery degradation based MDS (BDMDS) model that can consider the equivalent battery degradation cost precisely. Since the proposed NNBD model is highly non-linear and non-convex, BDMDS would be very hard to solve. To address this issue, a neural network and optimization decoupled heuristic (NNODH) algorithm is proposed in this paper to effectively solve this neural network embedded optimization problem. Simulation results demonstrate that the proposed NNODH algorithm is able to ob-tain the optimal solution with lowest total cost including normal operation cost and battery degradation cost.