Abstract:Understanding adversarial examples is crucial for improving the model's robustness, as they introduce imperceptible perturbations that deceive models. Effective adversarial examples, therefore, offer the potential to train more robust models by removing their singularities. We propose NODE-AdvGAN, a novel approach that treats adversarial generation as a continuous process and employs a Neural Ordinary Differential Equation (NODE) for simulating the dynamics of the generator. By mimicking the iterative nature of traditional gradient-based methods, NODE-AdvGAN generates smoother and more precise perturbations that preserve high perceptual similarity when added to benign images. We also propose a new training strategy, NODE-AdvGAN-T, which enhances transferability in black-box attacks by effectively tuning noise parameters during training. Experiments demonstrate that NODE-AdvGAN and NODE-AdvGAN-T generate more effective adversarial examples that achieve higher attack success rates while preserving better perceptual quality than traditional GAN-based methods.
Abstract:Inspired by the traditional partial differential equation (PDE) approach for image denoising, we propose a novel neural network architecture, referred as NODE-ImgNet, that combines neural ordinary differential equations (NODEs) with convolutional neural network (CNN) blocks. NODE-ImgNet is intrinsically a PDE model, where the dynamic system is learned implicitly without the explicit specification of the PDE. This naturally circumvents the typical issues associated with introducing artifacts during the learning process. By invoking such a NODE structure, which can also be viewed as a continuous variant of a residual network (ResNet) and inherits its advantage in image denoising, our model achieves enhanced accuracy and parameter efficiency. In particular, our model exhibits consistent effectiveness in different scenarios, including denoising gray and color images perturbed by Gaussian noise, as well as real-noisy images, and demonstrates superiority in learning from small image datasets.