Abstract:The mainstream media has much leeway in what it chooses to cover and how it covers it. These choices have real-world consequences on what people know and their subsequent behaviors. However, the lack of objective measures to evaluate editorial choices makes research in this area particularly difficult. In this paper, we argue that there are newsworthy topics where objective measures exist in the form of supporting data and propose a computational framework to analyze editorial choices in this setup. We focus on the economy because the reporting of economic indicators presents us with a relatively easy way to determine both the selection and framing of various publications. Their values provide a ground truth of how the economy is doing relative to how the publications choose to cover it. To do this, we define frame prediction as a set of interdependent tasks. At the article level, we learn to identify the reported stance towards the general state of the economy. Then, for every numerical quantity reported in the article, we learn to identify whether it corresponds to an economic indicator and whether it is being reported in a positive or negative way. To perform our analysis, we track six American publishers and each article that appeared in the top 10 slots of their landing page between 2015 and 2023.
Abstract:Various work has suggested that the memorability of an image is consistent across people, and thus can be treated as an intrinsic property of an image. Using computer vision models, we can make specific predictions about what people will remember or forget. While older work has used now-outdated deep learning architectures to predict image memorability, innovations in the field have given us new techniques to apply to this problem. Here, we propose and evaluate five alternative deep learning models which exploit developments in the field from the last five years, largely the introduction of residual neural networks, which are intended to allow the model to use semantic information in the memorability estimation process. These new models were tested against the prior state of the art with a combined dataset built to optimize both within-category and across-category predictions. Our findings suggest that the key prior memorability network had overstated its generalizability and was overfit on its training set. Our new models outperform this prior model, leading us to conclude that Residual Networks outperform simpler convolutional neural networks in memorability regression. We make our new state-of-the-art model readily available to the research community, allowing memory researchers to make predictions about memorability on a wider range of images.