Abstract:Sign language is an essential resource enabling access to communication and proper socioemotional development for individuals suffering from disabling hearing loss. As this population is expected to reach 700 million by 2050, the importance of the language becomes even more essential as it plays a critical role to ensure the inclusion of such individuals in society. The Sign Language Recognition field aims to bridge the gap between users and non-users of sign languages. However, the scarcity in quantity and quality of datasets is one of the main challenges limiting the exploration of novel approaches that could lead to significant advancements in this research area. Thus, this paper contributes by introducing two new datasets for the American Sign Language: the first is composed of the three-dimensional representation of the signers and, the second, by an unprecedented linguistics-based representation containing a set of phonological attributes of the signs.
Abstract:The recognition of sign language is a challenging task with an important role in society to facilitate the communication of deaf persons. We propose a new approach of Spatial-Temporal Graph Convolutional Network to sign language recognition based on the human skeletal movements. The method uses graphs to capture the signs dynamics in two dimensions, spatial and temporal, considering the complex aspects of the language. Additionally, we present a new dataset of human skeletons for sign language based on ASLLVD to contribute to future related studies.