Abstract:Contract review is an essential step in construction projects to prevent potential losses. However, the current methods for reviewing construction contracts lack effectiveness and reliability, leading to time-consuming and error-prone processes. While large language models (LLMs) have shown promise in revolutionizing natural language processing (NLP) tasks, they struggle with domain-specific knowledge and addressing specialized issues. This paper presents a novel approach that leverages LLMs with construction contract knowledge to emulate the process of contract review by human experts. Our tuning-free approach incorporates construction contract domain knowledge to enhance language models for identifying construction contract risks. The use of a natural language when building the domain knowledge base facilitates practical implementation. We evaluated our method on real construction contracts and achieved solid performance. Additionally, we investigated how large language models employ logical thinking during the task and provide insights and recommendations for future research.
Abstract:The emergence of large language models (LLMs) presents an unprecedented opportunity to automate construction contract management, reducing human errors and saving significant time and costs. However, LLMs may produce convincing yet inaccurate and misleading content due to a lack of domain expertise. To address this issue, expert-driven contract knowledge can be represented in a structured manner to constrain the automatic contract management process. This paper introduces the Nested Contract Knowledge Graph (NCKG), a knowledge representation approach that captures the complexity of contract knowledge using a nested structure. It includes a nested knowledge representation framework, a NCKG ontology built on the framework, and an implementation method. Furthermore, we present the LLM-assisted contract review pipeline enhanced with external knowledge in NCKG. Our pipeline achieves a promising performance in contract risk reviewing, shedding light on the combination of LLM and KG towards more reliable and interpretable contract management.