Abstract:In next-generation communications, massive machine-type communications (mMTC) induce severe burden on base stations. To address such an issue, automatic modulation classification (AMC) can help to reduce signaling overhead by blindly recognizing the modulation types without handshaking. Thus, it plays an important role in future intelligent modems. The emerging deep learning (DL) technique stores intelligence in the network, resulting in superior performance over traditional approaches. However, conventional DL-based approaches suffer from heavy training overhead, memory overhead, and computational complexity, which severely hinder practical applications for resource-limited scenarios, such as Vehicle-to-Everything (V2X) applications. Furthermore, the overhead of online retraining under time-varying fading channels has not been studied in the prior arts. In this work, an accumulated polar feature-based DL with a channel compensation mechanism is proposed to cope with the aforementioned issues. Firstly, the simulation results show that learning features from the polar domain with historical data information can approach near-optimal performance while reducing training overhead by 99.8 times. Secondly, the proposed neural network-based channel estimator (NN-CE) can learn the channel response and compensate for the distorted channel with 13% improvement. Moreover, in applying this lightweight NN-CE in a time-varying fading channel, two efficient mechanisms of online retraining are proposed, which can reduce transmission overhead and retraining overhead by 90% and 76%, respectively. Finally, the performance of the proposed approach is evaluated and compared with prior arts on a public dataset to demonstrate its great efficiency and lightness.
Abstract:Polar codes have attracted much attention in the past decade due to their capacity-achieving performance. The higher decoding capacity is required for 5G and beyond 5G (B5G). Although the cyclic redundancy check (CRC)- assisted successive cancellation list bit-flipping (CA-SCLF) decoders have been developed to obtain a better performance, the solution to error bit correction (bit-flipping) problem is still imperfect and hard to design. In this work, we leverage the expert knowledge in communication systems and adopt deep learning (DL) technique to obtain the better solution. A low-complexity long short-term memory network (LSTM)-assisted CA-SCLF decoder is proposed to further improve the performance of conventional CA-SCLF and avoid complexity and memory overhead. Our test results show that we can effectively improve the BLER performance by 0.11dB compared to prior work and reduce the complexity and memory overhead by over 30% of the network.
Abstract:To develop intelligent receivers, automatic modulation classification (AMC) plays an important role for better spectrum utilization. The emerging deep learning (DL) technique has received much attention in AMC due to its superior performance in classifying data with deep structure. In this work, a novel polar-based deep learning architecture with channel compensation network (CCN) is proposed. Our test results show that learning features from polar domain (r-theta) can improve recognition accuracy by 5% and reduce training overhead by 48%. Besides, the proposed CCN is also robust to channel fading, such as amplitude and phase offsets, and can improve the recognition accuracy by 14% under practical channel environments.