Abstract:Scientific facts are often spun in the popular press with the intent to influence public opinion and action, as was evidenced during the COVID-19 pandemic. Automatic detection of misinformation in the scientific domain is challenging because of the distinct styles of writing in these two media types and is still in its nascence. Most research on the validity of scientific reporting treats this problem as a claim verification challenge. In doing so, significant expert human effort is required to generate appropriate claims. Our solution bypasses this step and addresses a more real-world scenario where such explicit, labeled claims may not be available. The central research question of this paper is whether it is possible to use large language models (LLMs) to detect misinformation in scientific reporting. To this end, we first present a new labeled dataset SciNews, containing 2.4k scientific news stories drawn from trusted and untrustworthy sources, paired with related abstracts from the CORD-19 database. Our dataset includes both human-written and LLM-generated news articles, making it more comprehensive in terms of capturing the growing trend of using LLMs to generate popular press articles. Then, we identify dimensions of scientific validity in science news articles and explore how this can be integrated into the automated detection of scientific misinformation. We propose several baseline architectures using LLMs to automatically detect false representations of scientific findings in the popular press. For each of these architectures, we use several prompt engineering strategies including zero-shot, few-shot, and chain-of-thought prompting. We also test these architectures and prompting strategies on GPT-3.5, GPT-4, and Llama2-7B, Llama2-13B.
Abstract:The onset of the COVID-19 pandemic accentuated the need for access to biomedical literature to answer timely and disease-specific questions. During the early days of the pandemic, one of the biggest challenges we faced was the lack of peer-reviewed biomedical articles on COVID-19 that could be used to train machine learning models for question answering (QA). In this paper, we explore the roles weak supervision and data augmentation play in training deep neural network QA models. First, we investigate whether labels generated automatically from the structured abstracts of scholarly papers using an information retrieval algorithm, BM25, provide a weak supervision signal to train an extractive QA model. We also curate new QA pairs using information retrieval techniques, guided by the clinicaltrials.gov schema and the structured abstracts of articles, in the absence of annotated data from biomedical domain experts. Furthermore, we explore augmenting the training data of a deep neural network model with linguistic features from external sources such as lexical databases to account for variations in word morphology and meaning. To better utilize our training data, we apply curriculum learning to domain adaptation, fine-tuning our QA model in stages based on characteristics of the QA pairs. We evaluate our methods in the context of QA models at the core of a system to answer questions about COVID-19.