Abstract:The identification of device brands and models plays a pivotal role in the realm of multimedia forensic applications. This paper presents a framework capable of identifying devices using audio, visual content, or a fusion of them. The fusion of visual and audio content occurs later by applying two fundamental fusion rules: the product and the sum. The device identification problem is tackled as a classification one by leveraging Convolutional Neural Networks. Experimental evaluation illustrates that the proposed framework exhibits promising classification performance when independently using audio or visual content. Furthermore, although the fusion results don't consistently surpass both individual modalities, they demonstrate promising potential for enhancing classification performance. Future research could refine the fusion process to improve classification performance in both modalities consistently. Finally, a statistical significance test is performed for a more in-depth study of the classification results.
Abstract:The Electric Network Frequency (ENF) serves as a unique signature inherent to power distribution systems. Here, a novel approach for power grid classification is developed, leveraging ENF. Spectrograms are generated from audio and power recordings across different grids, revealing distinctive ENF patterns that aid in grid classification through a fusion of classifiers. Four traditional machine learning classifiers plus a Convolutional Neural Network (CNN), optimized using Neural Architecture Search, are developed for One-vs-All classification. This process generates numerous predictions per sample, which are then compiled and used to train a shallow multi-label neural network specifically designed to model the fusion process, ultimately leading to the conclusive class prediction for each sample. Experimental findings reveal that both validation and testing accuracy outperform those of current state-of-the-art classifiers, underlining the effectiveness and robustness of the proposed methodology.