Abstract:In this work, we present a method which determines optimal multi-step dynamic mode decomposition (DMD) models via entropic regression, which is a nonlinear information flow detection algorithm. Motivated by the higher-order DMD (HODMD) method of \cite{clainche}, and the entropic regression (ER) technique for network detection and model construction found in \cite{bollt, bollt2}, we develop a method that we call ERDMD that produces high fidelity time-delay DMD models that allow for nonuniform time space, and the time spacing is discovered by consider most informativity based on ER. These models are shown to be highly efficient and robust. We test our method over several data sets generated by chaotic attractors and show that we are able to build excellent reconstructions using relatively minimal models. We likewise are able to better identify multiscale features via our models which enhances the utility of dynamic mode decomposition.
Abstract:While the acquisition of time series has become increasingly more straightforward and sophisticated, developing dynamical models from time series is still a challenging and ever evolving problem domain. Within the last several years, to address this problem, there has been a merging of machine learning tools with what is called the dynamic mode decomposition (DMD). This general approach has been shown to be an especially promising avenue for sophisticated and accurate model development. Building on this prior body of work, we develop a deep learning DMD based method which makes use of the fundamental insight of Takens' Embedding Theorem to develop an adaptive learning scheme that better captures higher dimensional and chaotic dynamics. We call this method the Deep Learning Hankel DMD (DLHDMD). We show that the DLHDMD is able to generate accurate dynamics for chaotic time series, and we likewise explore how our method learns mappings which tend, after successful training, to significantly change the mutual information between dimensions in the dynamics. This appears to be a key feature in enhancing the DMD overall, and it should help provide further insight for developing more sophisticated deep learning methods for time series forecasting.
Abstract:Koopman operator theory shows how nonlinear dynamical systems can be represented as an infinite-dimensional, linear operator acting on a Hilbert space of observables of the system. However, determining the relevant modes and eigenvalues of this infinite-dimensional operator can be difficult. The extended dynamic mode decomposition (EDMD) is one such method for generating approximations to Koopman spectra and modes, but the EDMD method faces its own set of challenges due to the need of user defined observables. To address this issue, we explore the use of convolutional autoencoder networks to simultaneously find optimal families of observables which also generate both accurate embeddings of the flow into a space of observables and immersions of the observables back into flow coordinates. This network results in a global transformation of the flow and affords future state prediction via EDMD and the decoder network. We call this method deep learning dynamic mode decomposition (DLDMD). The method is tested on canonical nonlinear data sets and is shown to produce results that outperform a standard DMD approach.