Abstract:Most learners fail to develop deep text comprehension when reading textbooks passively. Posing questions about what learners have read is a well-established way of fostering their text comprehension. However, many textbooks lack self-assessment questions because authoring them is timeconsuming and expensive. Automatic question generators may alleviate this scarcity by generating sound pedagogical questions. However, generating questions automatically poses linguistic and pedagogical challenges. What should we ask? And, how do we phrase the question automatically? We address those challenges with an automatic question generator grounded in learning theory. The paper introduces a novel pedagogically meaningful content selection mechanism to find question-worthy sentences and answers in arbitrary textbook contents. We conducted an empirical evaluation study with educational experts, annotating 150 generated questions in six different domains. Results indicate a high linguistic quality of the generated questions. Furthermore, the evaluation results imply that the majority of the generated questions inquire central information related to the given text and may foster text comprehension in specific learning scenarios.
Abstract:Task selection in micro-task markets can be supported by recommender systems to help individuals to find appropriate tasks. Previous work showed that for the selection process of a micro-task the semantic aspects, such as the required action and the comprehensibility, are rated more important than factual aspects, such as the payment or the required completion time. This work gives a foundation to create such similarity measures. Therefore, we show that an automatic classification based on task descriptions is possible. Additionally, we propose similarity measures to cluster micro-tasks according to semantic aspects.