Abstract:Diffusion models are generative models that have recently demonstrated impressive performances in terms of sampling quality and density estimation in high dimensions. They rely on a forward continuous diffusion process and a backward continuous denoising process, which can be described by a time-dependent vector field and is used as a generative model. In the original formulation of the diffusion model, this vector field is assumed to be the score function (i.e. it is the gradient of the log-probability at a given time in the diffusion process). Curiously, on the practical side, most studies on diffusion models implement this vector field as a neural network function and do not constrain it be the gradient of some energy function (that is, most studies do not constrain the vector field to be conservative). Even though some studies investigated empirically whether such a constraint will lead to a performance gain, they lead to contradicting results and failed to provide analytical results. Here, we provide three analytical results regarding the extent of the modeling freedom of this vector field. {Firstly, we propose a novel decomposition of vector fields into a conservative component and an orthogonal component which satisfies a given (gauge) freedom. Secondly, from this orthogonal decomposition, we show that exact density estimation and exact sampling is achieved when the conservative component is exactly equals to the true score and therefore conservativity is neither necessary nor sufficient to obtain exact density estimation and exact sampling. Finally, we show that when it comes to inferring local information of the data manifold, constraining the vector field to be conservative is desirable.
Abstract:Normalizing Flows (NFs) are universal density estimators based on Neuronal Networks. However, this universality is limited: the density's support needs to be diffeomorphic to a Euclidean space. In this paper, we propose a novel method to overcome this limitation without sacrificing universality. The proposed method inflates the data manifold by adding noise in the normal space, trains an NF on this inflated manifold, and, finally, deflates the learned density. Our main result provides sufficient conditions on the manifold and the specific choice of noise under which the corresponding estimator is exact. Our method has the same computational complexity as NFs and does not require computing an inverse flow. We also show that, if the embedding dimension is much larger than the manifold dimension, noise in the normal space can be well approximated by Gaussian noise. This allows to use our method for approximating arbitrary densities on non-flat manifolds provided that the manifold dimension is known.