Abstract:Orthogonal frequency-division multiplexing (OFDM) is a promising waveform candidate for future joint sensing and communication systems. It is well known that the OFDM waveform is vulnerable to in-phase and quadrature-phase (IQ) imbalance, which increases the noise floor in a range-Doppler map (RDM). A state-of-the-art method for robustifying the OFDM waveform against IQ imbalance avoids an increased noise floor, but it generates additional ghost objects in the RDM [1]. A consequence of these additional ghost objects is a reduction of the maximum unambiguous range. In this work, a novel OFDM-based waveform robust to IQ imbalance is proposed, which neither increases the noise floor nor reduces the maximum unambiguous range. The latter is achieved by shifting the ghost objects in the RDM to different velocities such that their range variations observed over several consecutive RDMs do not correspond to the observed velocity. This allows tracking algorithms to identify them as ghost objects and eliminate them for the follow-up processing steps. Moreover, we propose complete communication systems for both the proposed waveform as well as for the state-of-the-art waveform, including methods for channel estimation, synchronization, and data estimation that are specifically designed to deal with frequency selective IQ imbalance which occurs in wideband systems. The effectiveness of these communication systems is demonstrated by means of bit error ratio (BER) simulations.
Abstract:Unique Word-orthogonal frequency division multiplexing (UW-OFDM) is known to provide various performance benefits over conventional cyclic prefix (CP) based OFDM. Most important, UW-OFDM features excellent spectral sidelobe suppression properties and an outstanding bit error ratio (BER) performance. Carrier frequency offset (CFO) induced impairments denote a challenging task for OFDM systems of any kind. In this work we investigate the CFO effects on UW-OFDM and compare it to conventional multi-carrier and single-carrier systems. Different CFO compensation approaches with different computational complexity are considered throughout this work and assessed against each other. A mean squared error analysis carried out after data estimation reveals a significant higher robustness of UW-OFDM over CP-OFDM against CFO effects. Additionally, the conducted BER simulations generally support this conclusion for various scenarios, ranging from uncoded to coded transmission in a frequency selective environment.
Abstract:A promising waveform candidate for future joint sensing and communication systems is orthogonal frequencydivision multiplexing (OFDM). For such systems, supporting multiple transmit antennas requires multiplexing methods for the generation of orthogonal transmit signals, where equidistant subcarrier interleaving (ESI) is the most popular multiplexing method. In this work, we analyze a multiplexing method called Doppler-division multiplexing (DDM). This method applies a phase shift from OFDM symbol to OFDM symbol to separate signals transmitted by different Tx antennas along the velocity axis of the range-Doppler map. While general properties of DDM for the task of radar sensing are analyzed in this work, the main focus lies on the implications of DDM on the communication task. It will be shown that for DDM, the channels observed in the communication receiver are heavily timevarying, preventing any meaningful transmission of data when not taken into account. In this work, a communication system designed to combat these time-varying channels is proposed, which includes methods for data estimation, synchronization, and channel estimation. Bit error ratio (BER) simulations demonstrate the superiority of this communications system compared to a system utilizing ESI.