Abstract:Visualizing the uncertainty of ensemble simulations is challenging due to the large size and multivariate and temporal features of ensemble data sets. One popular approach to studying the uncertainty of ensembles is analyzing the positional uncertainty of the level sets. Probabilistic marching cubes is a technique that performs Monte Carlo sampling of multivariate Gaussian noise distributions for positional uncertainty visualization of level sets. However, the technique suffers from high computational time, making interactive visualization and analysis impossible to achieve. This paper introduces a deep-learning-based approach to learning the level-set uncertainty for two-dimensional ensemble data with a multivariate Gaussian noise assumption. We train the model using the first few time steps from time-varying ensemble data in our workflow. We demonstrate that our trained model accurately infers uncertainty in level sets for new time steps and is up to 170X faster than that of the original probabilistic model with serial computation and 10X faster than that of the original parallel computation.
Abstract:Time-varying vector fields produced by computational fluid dynamics simulations are often prohibitively large and pose challenges for accurate interactive analysis and exploration. To address these challenges, reduced Lagrangian representations have been increasingly researched as a means to improve scientific time-varying vector field exploration capabilities. This paper presents a novel deep neural network-based particle tracing method to explore time-varying vector fields represented by Lagrangian flow maps. In our workflow, in situ processing is first utilized to extract Lagrangian flow maps, and deep neural networks then use the extracted data to learn flow field behavior. Using a trained model to predict new particle trajectories offers a fixed small memory footprint and fast inference. To demonstrate and evaluate the proposed method, we perform an in-depth study of performance using a well-known analytical data set, the Double Gyre. Our study considers two flow map extraction strategies as well as the impact of the number of training samples and integration durations on efficacy, evaluates multiple sampling options for training and testing and informs hyperparameter settings. Overall, we find our method requires a fixed memory footprint of 10.5 MB to encode a Lagrangian representation of a time-varying vector field while maintaining accuracy. For post hoc analysis, loading the trained model costs only two seconds, significantly reducing the burden of I/O when reading data for visualization. Moreover, our parallel implementation can infer one hundred locations for each of two thousand new pathlines across the entire temporal resolution in 1.3 seconds using one NVIDIA Titan RTX GPU.