Abstract:Diffusion-weighted magnetic resonance imaging is sensitive to the microstructural properties of brain tissue. However, estimating clinically and scientifically relevant microstructural properties from the measured signals remains a highly challenging inverse problem. This paper presents a novel framework for estimating microstructural parameters using recently developed orientationally invariant spherical convolutional neural networks and efficiently simulated training data with a known ground truth. The network was trained to predict the ground-truth parameter values from simulated noisy data and applied to imaging data acquired in a clinical setting to generate microstructural parameter maps. Our model could estimate model parameters from spherical data more accurately than conventional non-linear least squares or a multi-layer perceptron applied on powder-averaged data (i.e., the spherical mean technique, a popular method for orientationally invariant microstructural parameter estimation). Importantly, our method is generalizable and can be used to estimate the parameters of any Gaussian compartment model.