Abstract:Talking head synthesis is to synthesize a lip-synchronized talking head video using audio. Recently, the capability of NeRF to enhance the realism and texture details of synthesized talking heads has attracted the attention of researchers. However, most current NeRF methods based on audio are exclusively concerned with the rendering of frontal faces. These methods are unable to generate clear talking heads in novel views. Another prevalent challenge in current 3D talking head synthesis is the difficulty in aligning acoustic and visual spaces, which often results in suboptimal lip-syncing of the generated talking heads. To address these issues, we propose Neural Radiance Field with 3D Prior Aided Audio Disentanglement for Talking Head Synthesis (NeRF-3DTalker). Specifically, the proposed method employs 3D prior information to synthesize clear talking heads with free views. Additionally, we propose a 3D Prior Aided Audio Disentanglement module, which is designed to disentangle the audio into two distinct categories: features related to 3D awarded speech movements and features related to speaking style. Moreover, to reposition the generated frames that are distant from the speaker's motion space in the real space, we have devised a local-global Standardized Space. This method normalizes the irregular positions in the generated frames from both global and local semantic perspectives. Through comprehensive qualitative and quantitative experiments, it has been demonstrated that our NeRF-3DTalker outperforms state-of-the-art in synthesizing realistic talking head videos, exhibiting superior image quality and lip synchronization. Project page: https://nerf-3dtalker.github.io/NeRF-3Dtalker.
Abstract:Talking face synthesis driven by audio is one of the current research hotspots in the fields of multidimensional signal processing and multimedia. Neural Radiance Field (NeRF) has recently been brought to this research field in order to enhance the realism and 3D effect of the generated faces. However, most existing NeRF-based methods either burden NeRF with complex learning tasks while lacking methods for supervised multimodal feature fusion, or cannot precisely map audio to the facial region related to speech movements. These reasons ultimately result in existing methods generating inaccurate lip shapes. This paper moves a portion of NeRF learning tasks ahead and proposes a talking face synthesis method via NeRF with attention-based disentanglement (NeRF-AD). In particular, an Attention-based Disentanglement module is introduced to disentangle the face into Audio-face and Identity-face using speech-related facial action unit (AU) information. To precisely regulate how audio affects the talking face, we only fuse the Audio-face with audio feature. In addition, AU information is also utilized to supervise the fusion of these two modalities. Extensive qualitative and quantitative experiments demonstrate that our NeRF-AD outperforms state-of-the-art methods in generating realistic talking face videos, including image quality and lip synchronization. To view video results, please refer to https://xiaoxingliu02.github.io/NeRF-AD.
Abstract:Large-scale numerical simulations are capable of generating data up to terabytes or even petabytes. As a promising method of data reduction, super-resolution (SR) has been widely studied in the scientific visualization community. However, most of them are based on deep convolutional neural networks (CNNs) or generative adversarial networks (GANs) and the scale factor needs to be determined before constructing the network. As a result, a single training session only supports a fixed factor and has poor generalization ability. To address these problems, this paper proposes a Feature-Enhanced Implicit Neural Representation (FFEINR) for spatio-temporal super-resolution of flow field data. It can take full advantage of the implicit neural representation in terms of model structure and sampling resolution. The neural representation is based on a fully connected network with periodic activation functions, which enables us to obtain lightweight models. The learned continuous representation can decode the low-resolution flow field input data to arbitrary spatial and temporal resolutions, allowing for flexible upsampling. The training process of FFEINR is facilitated by introducing feature enhancements for the input layer, which complements the contextual information of the flow field. To demonstrate the effectiveness of the proposed method, a series of experiments are conducted on different datasets by setting different hyperparameters. The results show that FFEINR achieves significantly better results than the trilinear interpolation method.