Abstract:Given the nonlinearity of the interaction between weather and soil variables, a novel deep neural network regressor (DNNR) was carefully designed with considerations to the depth, number of neurons of the hidden layers, and the hyperparameters with their optimizations. Additionally, a new metric, the average of absolute root squared error (ARSE) was proposed to address the shortcomings of root mean square error (RMSE) and mean absolute error (MAE) while combining their strengths. Using the ARSE metric, the random forest regressor (RFR) and the extreme gradient boosting regressor (XGBR), were compared with DNNR. The RFR and XGBR achieved yield errors of 0.0000294 t/ha, and 0.000792 t/ha, respectively, compared to the DNNR(s) which achieved 0.0146 t/ha and 0.0209 t/ha, respectively. All errors were impressively small. However, with changes to the explanatory variables to ensure generalizability to unforeseen data, DNNR(s) performed best. The unforeseen data, different from unseen data, is coined to represent sudden and unexplainable change to weather and soil variables due to climate change. Further analysis reveals that a strong interaction does exist between weather and soil variables. Using precipitation and silt, which are strong-negatively and strong-positively correlated with yield, respectively, yield was observed to increase when precipitation was reduced and silt increased, and vice-versa.