Abstract:We extend a well-known dimension reduction method, t-distributed stochastic neighbor embedding (t-SNE), from non-parametric to parametric by training neural networks. The main advantage of a parametric technique is the generalization of handling new data, which is particularly beneficial for streaming data exploration. However, training a neural network to optimize the t-SNE objective function frequently fails. Previous methods overcome this problem by pre-training and then fine-tuning the network. We found that the training failure comes from the gradient exploding problem, which occurs when data points distant in high-dimensional space are projected to nearby embedding positions. Accordingly, we applied the gradient clipping method to solve the problem. Since the networks are trained by directly optimizing the t-SNE objective function, our method achieves an embedding quality that is compatible with the non-parametric t-SNE while enjoying the ability of generalization. Due to mini-batch network training, our parametric dimension reduction method is highly efficient. We further extended other non-parametric state-of-the-art approaches, such as LargeVis and UMAP, to the parametric versions. Experiment results demonstrate the feasibility of our method. Considering its practicability, we will soon release the codes for public use.
Abstract:We present a system to help designers create icons that are widely used in banners, signboards, billboards, homepages, and mobile apps. Designers are tasked with drawing contours, whereas our system colorizes contours in different styles. This goal is achieved by training a dual conditional generative adversarial network (GAN) on our collected icon dataset. One condition requires the generated image and the drawn contour to possess a similar contour, while the other anticipates the image and the referenced icon to be similar in color style. Accordingly, the generator takes a contour image and a man-made icon image to colorize the contour, and then the discriminators determine whether the result fulfills the two conditions. The trained network is able to colorize icons demanded by designers and greatly reduces their workload. For the evaluation, we compared our dual conditional GAN to several state-of-the-art techniques. Experiment results demonstrate that our network is over the previous networks. Finally, we will provide the source code, icon dataset, and trained network for public use.