Abstract:Motivated by high resource costs of centralized machine learning schemes as well as data privacy concerns, federated learning (FL) emerged as an efficient alternative that relies on aggregating locally trained models rather than collecting clients' potentially private data. In practice, available resources and data distributions vary from one client to another, creating an inherent system heterogeneity that leads to deterioration of the performance of conventional FL algorithms. In this work, we present a federated quantization-based self-supervised learning scheme (Fed-QSSL) designed to address heterogeneity in FL systems. At clients' side, to tackle data heterogeneity we leverage distributed self-supervised learning while utilizing low-bit quantization to satisfy constraints imposed by local infrastructure and limited communication resources. At server's side, Fed-QSSL deploys de-quantization, weighted aggregation and re-quantization, ultimately creating models personalized to both data distribution as well as specific infrastructure of each client's device. We validated the proposed algorithm on real world datasets, demonstrating its efficacy, and theoretically analyzed impact of low-bit training on the convergence and robustness of the learned models.