Abstract:The Gaussian process (GP) model, which has been extensively applied as priors of functions, has demonstrated excellent performance. The specification of a large number of parameters affects the computational efficiency and the feasibility of implementation of a control strategy. We propose a linear model to approximate GPs; this model expands the GP model by a series of basis functions. Several examples and simulation studies are presented to demonstrate the advantages of the proposed method. A control strategy is provided with the proposed linear model.