Abstract:Offline reinforcement learning (RL) aims to learn an effective policy from a pre-collected dataset. Most existing works are to develop sophisticated learning algorithms, with less emphasis on improving the data collection process. Moreover, it is even challenging to extend the single-task setting and collect a task-agnostic dataset that allows an agent to perform multiple downstream tasks. In this paper, we propose a Curiosity-driven Unsupervised Data Collection (CUDC) method to expand feature space using adaptive temporal distances for task-agnostic data collection and ultimately improve learning efficiency and capabilities for multi-task offline RL. To achieve this, CUDC estimates the probability of the k-step future states being reachable from the current states, and adapts how many steps into the future that the dynamics model should predict. With this adaptive reachability mechanism in place, the feature representation can be diversified, and the agent can navigate itself to collect higher-quality data with curiosity. Empirically, CUDC surpasses existing unsupervised methods in efficiency and learning performance in various downstream offline RL tasks of the DeepMind control suite.
Abstract:In reinforcement learning (RL), it is challenging to learn directly from high-dimensional observations, where data augmentation has recently been shown to remedy this via encoding invariances from raw pixels. Nevertheless, we empirically find that not all samples are equally important and hence simply injecting more augmented inputs may instead cause instability in Q-learning. In this paper, we approach this problem systematically by developing a model-agnostic Contrastive-Curiosity-Driven Learning Framework (CCLF), which can fully exploit sample importance and improve learning efficiency in a self-supervised manner. Facilitated by the proposed contrastive curiosity, CCLF is capable of prioritizing the experience replay, selecting the most informative augmented inputs, and more importantly regularizing the Q-function as well as the encoder to concentrate more on under-learned data. Moreover, it encourages the agent to explore with a curiosity-based reward. As a result, the agent can focus on more informative samples and learn representation invariances more efficiently, with significantly reduced augmented inputs. We apply CCLF to several base RL algorithms and evaluate on the DeepMind Control Suite, Atari, and MiniGrid benchmarks, where our approach demonstrates superior sample efficiency and learning performances compared with other state-of-the-art methods.
Abstract:Psychological curiosity plays a significant role in human intelligence to enhance learning through exploration and information acquisition. In the Artificial Intelligence (AI) community, artificial curiosity provides a natural intrinsic motivation for efficient learning as inspired by human cognitive development; meanwhile, it can bridge the existing gap between AI research and practical application scenarios, such as overfitting, poor generalization, limited training samples, high computational cost, etc. As a result, curiosity-driven learning (CDL) has become increasingly popular, where agents are self-motivated to learn novel knowledge. In this paper, we first present a comprehensive review on the psychological study of curiosity and summarize a unified framework for quantifying curiosity as well as its arousal mechanism. Based on the psychological principle, we further survey the literature of existing CDL methods in the fields of Reinforcement Learning, Recommendation, and Classification, where both advantages and disadvantages as well as future work are discussed. As a result, this work provides fruitful insights for future CDL research and yield possible directions for further improvement.