Abstract:This paper presents a high linearity PAM-4 transmitter (TX) architecture, consisting of a three-segment micro-ring modulator (MRM) and a matched CMOS driver. This architecture can drive a high-linearity 4-level pulse amplitude (PAM-4) modulation signal, thereby extending the tunable operating wavelength range for achieving linear PAM-4 output. We use the three-segment MRM to increase design flexibility so that the linearity of PAM-4 output can be optimized with another degree of freedom. Each phase shift region is directly driven by the independently amplitude-tunable Non-Return-to-Zero (NRZ) signal. The three-segment modulator can achieve an adjustable wavelength range of approximately 0.037 nm within the high linearity PAM-4 output limit when the driving voltage varies from 1.5 V to 3 V, simultaneously achieving an adjustable insertion loss (IL) range of approximately 2 dB, roughly four times that of the two-segment MRM with a similar design. The driver circuit with adjustable driving voltage is co-designed to adjust the eye height to improve PAM-4 linearity. In this article, the high linearity PAM-4 silicon micro-ring architecture can be employed in optical transmitters to adjust PAM-4 eye-opening size and maximize the PAM-4 output linearity, thus offering the potential for high-performance and low-power overhead transmitters.