Abstract:Commonsense knowledge is crucial to many natural language processing tasks. Existing works usually incorporate graph knowledge with conventional graph neural networks (GNNs), leading to the text and graph knowledge encoding processes being separated in a serial pipeline. We argue that these separate representation learning stages may be suboptimal for neural networks to learn the overall context contained in both types of input knowledge. In this paper, we propose a novel context-aware graph-attention model (Context-aware GAT), which can effectively incorporate global features of relevant knowledge graphs based on a context-enhanced knowledge aggregation process. Specifically, our framework leverages a novel representation learning approach to process heterogeneous features - combining flattened graph knowledge with text. To the best of our knowledge, this is the first attempt at hierarchically applying graph knowledge aggregation on a connected subgraph in addition to contextual information to support commonsense dialogue generation. This framework shows superior performance compared to conventional GNN-based language frameworks. Both automatic and human evaluation demonstrates that our proposed model has significant performance uplifts over state-of-the-art baselines.