Abstract:Translation-based Video Synthesis (TVS) has emerged as a vital research area in computer vision, aiming to facilitate the transformation of videos between distinct domains while preserving both temporal continuity and underlying content features. This technique has found wide-ranging applications, encompassing video super-resolution, colorization, segmentation, and more, by extending the capabilities of traditional image-to-image translation to the temporal domain. One of the principal challenges faced in TVS is the inherent risk of introducing flickering artifacts and inconsistencies between frames during the synthesis process. This is particularly challenging due to the necessity of ensuring smooth and coherent transitions between video frames. Efforts to tackle this challenge have induced the creation of diverse strategies and algorithms aimed at mitigating these unwanted consequences. This comprehensive review extensively examines the latest progress in the realm of TVS. It thoroughly investigates emerging methodologies, shedding light on the fundamental concepts and mechanisms utilized for proficient video synthesis. This survey also illuminates their inherent strengths, limitations, appropriate applications, and potential avenues for future development.
Abstract:Neural rendering combines ideas from classical computer graphics and machine learning to synthesize images from real-world observations. NeRF, short for Neural Radiance Fields, is a recent innovation that uses AI algorithms to create 3D objects from 2D images. By leveraging an interpolation approach, NeRF can produce new 3D reconstructed views of complicated scenes. Rather than directly restoring the whole 3D scene geometry, NeRF generates a volumetric representation called a ``radiance field,'' which is capable of creating color and density for every point within the relevant 3D space. The broad appeal and notoriety of NeRF make it imperative to examine the existing research on the topic comprehensively. While previous surveys on 3D rendering have primarily focused on traditional computer vision-based or deep learning-based approaches, only a handful of them discuss the potential of NeRF. However, such surveys have predominantly focused on NeRF's early contributions and have not explored its full potential. NeRF is a relatively new technique continuously being investigated for its capabilities and limitations. This survey reviews recent advances in NeRF and categorizes them according to their architectural designs, especially in the field of novel view synthesis.