Abstract:While there are a lot of models for instance segmentation, PolarMask stands out as a unique one that represents an object by a Polar coordinate system. With an anchor-box-free design and a single-stage framework that conducts detection and segmentation at one time, PolarMask is proved to be able to balance efficiency and accuracy. Hence, it can be easily connected with other downstream real-time applications. In this work, we observe that there are two deficiencies associated with PolarMask: (i) inability of representing concave objects and (ii) inefficiency in using ray regression. We propose MP-PolarMask (Multi-Point PolarMask) by taking advantage of multiple Polar systems. The main idea is to extend from one main Polar system to four auxiliary Polar systems, thus capable of representing more complicated convex-and-concave-mixed shapes. We validate MP-PolarMask on both general objects and food objects of the COCO dataset, and the results demonstrate significant improvement of 13.69% in AP_L and 7.23% in AP over PolarMask with 36 rays.
Abstract:This study proposes a simple method for multi-object tracking (MOT) of players in a badminton court. We leverage two off-the-shelf cameras, one on the top of the court and the other on the side of the court. The one on the top is to track players' trajectories, while the one on the side is to analyze the pixel features of players. By computing the correlations between adjacent frames and engaging the information of the two cameras, MOT of badminton players is obtained. This two-camera approach addresses the challenge of player occlusion and overlapping in a badminton court, providing player trajectory tracking and multi-angle analysis. The presented system offers insights into the positions and movements of badminton players, thus serving as a coaching or self-training tool for badminton players to improve their gaming strategies.