Abstract:Formal verification of robotic tasks requires a simple yet conformant model of the used robot. We present the first work on generating reachset conformant models for robotic contact tasks considering hybrid (mixed continuous and discrete) dynamics. Reachset conformance requires that the set of reachable outputs of the abstract model encloses all previous measurements to transfer safety properties. Aiming for industrial applications, we describe the system using a simple hybrid automaton with linear dynamics. We inject non-determinism into the continuous dynamics and the discrete transitions, and we optimally identify all model parameters together with the non-determinism required to capture the recorded behaviors. Using two 3-DOF robots, we show that our approach can effectively generate models to capture uncertainties in system behavior and substantially reduce the required testing effort in industrial applications.
Abstract:Verifying the correct behavior of robots in contact tasks is challenging due to model uncertainties associated with contacts. Standard methods for testing often fall short since all (uncountable many) solutions cannot be obtained. Instead, we propose to formally and efficiently verify robot behaviors in contact tasks using reachability analysis, which enables checking all the reachable states against user-provided specifications. To this end, we extend the state of the art in reachability analysis for hybrid (mixed discrete and continuous) dynamics subject to discrete-time input trajectories. In particular, we present a novel and scalable guard intersection approach to reliably compute the complex behavior caused by contacts. We model robots subject to contacts as hybrid automata in which crucial time delays are included. The usefulness of our approach is demonstrated by verifying safe human-robot interaction in the presence of constrained collisions, which was out of reach for existing methods.