Abstract:Generative AI models ought to be useful and safe across cross-cultural contexts. One critical step toward this goal is understanding how AI models adhere to sociocultural norms. While this challenge has gained attention in NLP, existing work lacks both nuance and coverage in understanding and evaluating models' norm adherence. We address these gaps by introducing a taxonomy of norms that clarifies their contexts (e.g., distinguishing between human-human norms that models should recognize and human-AI interactional norms that apply to the human-AI interaction itself), specifications (e.g., relevant domains), and mechanisms (e.g., modes of enforcement). We demonstrate how our taxonomy can be operationalized to automatically evaluate models' norm adherence in naturalistic, open-ended settings. Our exploratory analyses suggest that state-of-the-art models frequently violate norms, though violation rates vary by model, interactional context, and country. We further show that violation rates also vary by prompt intent and situational framing. Our taxonomy and demonstrative evaluation pipeline enable nuanced, context-sensitive evaluation of cultural norm adherence in realistic settings.
Abstract:Current AI models often fail to account for local context and language, given the predominance of English and Western internet content in their training data. This hinders the global relevance, usefulness, and safety of these models as they gain more users around the globe. Amplify Initiative, a data platform and methodology, leverages expert communities to collect diverse, high-quality data to address the limitations of these models. The platform is designed to enable co-creation of datasets, provide access to high-quality multilingual datasets, and offer recognition to data authors. This paper presents the approach to co-creating datasets with domain experts (e.g., health workers, teachers) through a pilot conducted in Sub-Saharan Africa (Ghana, Kenya, Malawi, Nigeria, and Uganda). In partnership with local researchers situated in these countries, the pilot demonstrated an end-to-end approach to co-creating data with 155 experts in sensitive domains (e.g., physicians, bankers, anthropologists, human and civil rights advocates). This approach, implemented with an Android app, resulted in an annotated dataset of 8,091 adversarial queries in seven languages (e.g., Luganda, Swahili, Chichewa), capturing nuanced and contextual information related to key themes such as misinformation and public interest topics. This dataset in turn can be used to evaluate models for their safety and cultural relevance within the context of these languages.