Abstract:Extracting sections from clinical notes is crucial for downstream analysis but is challenging due to variability in formatting and labor-intensive nature of manual sectioning. While proprietary large language models (LLMs) have shown promise, privacy concerns limit their accessibility. This study develops a pipeline for automated note sectioning using open-source LLMs, focusing on three sections: History of Present Illness, Interval History, and Assessment and Plan. We fine-tuned three open-source LLMs to extract sections using a curated dataset of 487 progress notes, comparing results relative to proprietary models (GPT-4o, GPT-4o mini). Internal and external validity were assessed via precision, recall and F1 score. Fine-tuned Llama 3.1 8B outperformed GPT-4o (F1=0.92). On the external validity test set, performance remained high (F1= 0.85). Fine-tuned open-source LLMs can surpass proprietary models in clinical note sectioning, offering advantages in cost, performance, and accessibility.
Abstract:Clinical notes contain rich data, which is unexploited in predictive modeling compared to structured data. In this work, we developed a new text representation Clinical XLNet for clinical notes which also leverages the temporal information of the sequence of the notes. We evaluated our models on prolonged mechanical ventilation prediction problem and our experiments demonstrated that Clinical XLNet outperforms the best baselines consistently.