Abstract:Accurate understanding of muscle activation and muscle forces plays an essential role in neuro-rehabilitation and musculoskeletal disorder treatments. Computational musculoskeletal modeling has been widely used as a powerful non-invasive tool to estimate them through inverse dynamics using static optimization, but the inherent computational complexity results in time-consuming analysis. In this paper, we propose a knowledge-based deep learning framework for time-efficient inverse dynamic analysis, which can predict muscle activation and muscle forces from joint kinematic data directly while not requiring any label information during model training. The Bidirectional Gated Recurrent Unit (BiGRU) neural network is selected as the backbone of our model due to its proficient handling of time-series data. Prior physical knowledge from forward dynamics and pre-selected inverse dynamics based physiological criteria are integrated into the loss function to guide the training of neural networks. Experimental validations on two datasets, including one benchmark upper limb movement dataset and one self-collected lower limb movement dataset from six healthy subjects, are performed. The experimental results have shown that the selected BiGRU architecture outperforms other neural network models when trained using our specifically designed loss function, which illustrates the effectiveness and robustness of the proposed framework.
Abstract:Computational biomechanical analysis plays a pivotal role in understanding and improving human movements and physical functions. Although physics-based modeling methods can interpret the dynamic interaction between the neural drive to muscle dynamics and joint kinematics, they suffer from high computational latency. In recent years, data-driven methods have emerged as a promising alternative due to their fast execution speed, but label information is still required during training, which is not easy to acquire in practice. To tackle these issues, this paper presents a novel physics-informed deep learning method to predict muscle forces without any label information during model training. In addition, the proposed method could also identify personalized muscle-tendon parameters. To achieve this, the Hill muscle model-based forward dynamics is embedded into the deep neural network as the additional loss to further regulate the behavior of the deep neural network. Experimental validations on the wrist joint from six healthy subjects are performed, and a fully connected neural network (FNN) is selected to implement the proposed method. The predicted results of muscle forces show comparable or even lower root mean square error (RMSE) and higher coefficient of determination compared with baseline methods, which have to use the labeled surface electromyography (sEMG) signals, and it can also identify muscle-tendon parameters accurately, demonstrating the effectiveness of the proposed physics-informed deep learning method.