Abstract:Federated learning (FL) is a decentralized AI mechanism suitable for a large number of devices like in smart IoT. A major challenge of FL is the non-IID dataset problem, originating from the heterogeneous data collected by FL participants, leading to performance deterioration of the trained global model. There have been various attempts to rectify non-IID dataset, mostly focusing on manipulating the collected data. This paper, however, proposes a novel approach to ensure data IIDness by properly clustering and grouping mobile IoT nodes exploiting their geographical characteristics, so that each FL group can achieve IID dataset. We first provide an experimental evidence for the independence and identicalness features of IoT data according to the inter-device distance, and then propose Dynamic Clustering and Partial-Steady Grouping algorithms that partition FL participants to achieve near-IIDness in their dataset while considering device mobility. Our mechanism significantly outperforms benchmark grouping algorithms at least by 110 times in terms of the joint cost between the number of dropout devices and the evenness in per-group device count, with a mild increase in the number of groups only by up to 0.93 groups.
Abstract:6G network technology will emerge in a landscape where visual data transmissions dominate global mobile traffic and are expected to grow continuously, driven by the increasing demand for AI-based computer vision applications. This will make already challenging task of visual data transmission even more difficult. In this work, we review effective techniques for visual data transmission, such as content compression and adaptive video streaming, highlighting their advantages and limitations. Further, considering the scalability and cost issues of cloud-based and on-device AI services, we explore distributed in-network computing architecture like fog-computing as a direction of 6G networks, and investigate the necessary technical properties for the timely delivery of visual data.
Abstract:We develop a Neural Architecture Search (NAS) framework for CycleGAN that carries out unpaired image-to-image translation task. Extending previous NAS techniques for Generative Adversarial Networks (GANs) to CycleGAN is not straightforward due to the task difference and greater search space. We design architectures that consist of a stack of simple ResNet-based cells and develop a search method that effectively explore the large search space. We show that our framework, called CycleGANAS, not only effectively discovers high-performance architectures that either match or surpass the performance of the original CycleGAN, but also successfully address the data imbalance by individual architecture search for each translation direction. To our best knowledge, it is the first NAS result for CycleGAN and shed light on NAS for more complex structures.