Abstract:Multi-objective optimization of the textile manufacturing process is an increasing challenge because of the growing complexity involved in the development of the textile industry. The use of intelligent techniques has been often discussed in this domain, although a significant improvement from certain successful applications has been reported, the traditional methods failed to work with high-as well as human intervention. Upon which, this paper proposed a multi-agent reinforcement learning (MARL) framework to transform the optimization process into a stochastic game and introduced the deep Q-networks algorithm to train the multiple agents. A utilitarian selection mechanism was employed in the stochastic game, which (-greedy policy) in each state to avoid the interruption of multiple equilibria and achieve the correlated equilibrium optimal solutions of the optimizing process. The case study result reflects that the proposed MARL system is possible to achieve the optimal solutions for the textile ozonation process and it performs better than the traditional approaches.
Abstract:This paper introduced a reinforcement learning based decision support system in textile manufacturing process. A solution optimization problem of color fading ozonation is discussed and set up as a Markov Decision Process (MDP) in terms of tuple {S, A, P, R}. Q-learning is used to train an agent in the interaction with the setup environment by accumulating the reward R. According to the application result, it is found that the proposed MDP model has well expressed the optimization problem of textile manufacturing process discussed in this paper, therefore the use of reinforcement learning to support decision making in this sector is conducted and proven that is applicable with promising prospects.