Abstract:Distributed learning is indispensable for training large-scale deep models. Asynchronous SGD~(ASGD) and its variants are commonly used distributed learning methods in many scenarios where the computing capabilities of workers in the cluster are heterogeneous. Momentum has been acknowledged for its benefits in both optimization and generalization in deep model training. However, existing works have found that naively incorporating momentum into ASGD can impede the convergence. In this paper, we propose a novel method, called ordered momentum (OrMo), for ASGD. In OrMo, momentum is incorporated into ASGD by organizing the gradients in order based on their iteration indexes. We theoretically prove the convergence of OrMo for non-convex problems. To the best of our knowledge, this is the first work to establish the convergence analysis of ASGD with momentum without relying on the bounded delay assumption. Empirical results demonstrate that OrMo can achieve better convergence performance compared with ASGD and other asynchronous methods with momentum.
Abstract:Byzantine-robust distributed learning (BRDL), in which computing devices are likely to behave abnormally due to accidental failures or malicious attacks, has recently become a hot research topic. However, even in the independent and identically distributed (i.i.d.) case, existing BRDL methods will suffer from a significant drop on model accuracy due to the large variance of stochastic gradients. Increasing batch sizes is a simple yet effective way to reduce the variance. However, when the total number of gradient computation is fixed, a too-large batch size will lead to a too-small iteration number (update number), which may also degrade the model accuracy. In view of this challenge, we mainly study the optimal batch size when the total number of gradient computation is fixed in this work. In particular, we theoretically and empirically show that when the total number of gradient computation is fixed, the optimal batch size in BRDL increases with the fraction of Byzantine workers. Therefore, compared to the case without attacks, the batch size should be set larger when under Byzantine attacks. However, for existing BRDL methods, large batch sizes will lead to a drop on model accuracy, even if there is no Byzantine attack. To deal with this problem, we propose a novel BRDL method, called Byzantine-robust stochastic gradient descent with normalized momentum (ByzSGDnm), which can alleviate the drop on model accuracy in large-batch cases. Moreover, we theoretically prove the convergence of ByzSGDnm for general non-convex cases under Byzantine attacks. Empirical results show that ByzSGDnm has a comparable performance to existing BRDL methods under bit-flipping failure, but can outperform existing BRDL methods under deliberately crafted attacks.