Abstract:The internet-of-Vehicle (IoV) can facilitate seamless connectivity between connected vehicles (CV), autonomous vehicles (AV), and other IoV entities. Intrusion Detection Systems (IDSs) for IoV networks can rely on machine learning (ML) to protect the in-vehicle network from cyber-attacks. Blockchain-based Federated Forests (BFFs) could be used to train ML models based on data from IoV entities while protecting the confidentiality of the data and reducing the risks of tampering with the data. However, ML models created this way are still vulnerable to evasion, poisoning, and exploratory attacks using adversarial examples. This paper investigates the impact of various possible adversarial examples on the BFF-IDS. We proposed integrating a statistical detector to detect and extract unknown adversarial samples. By including the unknown detected samples into the dataset of the detector, we augment the BFF-IDS with an additional model to detect original known attacks and the new adversarial inputs. The statistical adversarial detector confidently detected adversarial examples at the sample size of 50 and 100 input samples. Furthermore, the augmented BFF-IDS (BFF-IDS(AUG)) successfully mitigates the adversarial examples with more than 96% accuracy. With this approach, the model will continue to be augmented in a sandbox whenever an adversarial sample is detected and subsequently adopt the BFF-IDS(AUG) as the active security model. Consequently, the proposed integration of the statistical adversarial detector and the subsequent augmentation of the BFF-IDS with detected adversarial samples provides a sustainable security framework against adversarial examples and other unknown attacks.