Abstract:In the past few years co-clustering has emerged as an important data mining tool for two way data analysis. Co-clustering is more advantageous over traditional one dimensional clustering in many ways such as, ability to find highly correlated sub-groups of rows and columns. However, one of the overlooked benefits of co-clustering is that, it can be used to extract meaningful knowledge for various other knowledge extraction purposes. For example, building predictive models with high dimensional data and heterogeneous population is a non-trivial task. Co-clusters extracted from such data, which shows similar pattern in both the dimension, can be used for a more accurate predictive model building. Several applications such as finding patient-disease cohorts in health care analysis, finding user-genre groups in recommendation systems and community detection problems can benefit from co-clustering technique that utilizes the predictive power of the data to generate co-clusters for improved data analysis. In this paper, we present the novel idea of Predictive Overlapping Co-Clustering (POCC) as an optimization problem for a more effective and improved predictive analysis. Our algorithm generates optimal co-clusters by maximizing predictive power of the co-clusters subject to the constraints on the number of row and column clusters. In this paper precision, recall and f-measure have been used as evaluation measures of the resulting co-clusters. Results of our algorithm has been compared with two other well-known techniques - K-means and Spectral co-clustering, over four real data set namely, Leukemia, Internet-Ads, Ovarian cancer and MovieLens data set. The results demonstrate the effectiveness and utility of our algorithm POCC in practice.
Abstract:In this paper we present a novel iterative multiphase clustering technique for efficiently clustering high dimensional data points. For this purpose we implement clustering feature (CF) tree on a real data set and a Gaussian density distribution constraint on the resultant CF tree. The post processing by the application of Gaussian density distribution function on the micro-clusters leads to refinement of the previously formed clusters thus improving their quality. This algorithm also succeeds in overcoming the inherent drawbacks of conventional hierarchical methods of clustering like inability to undo the change made to the dendogram of the data points. Moreover, the constraint measure applied in the algorithm makes this clustering technique suitable for need driven data analysis. We provide veracity of our claim by evaluating our algorithm with other similar clustering algorithms. Introduction