Abstract:The optimization of atomic structures plays a pivotal role in understanding and designing materials with desired properties. However, conventional methods often struggle with the formidable task of navigating the vast potential energy surface, especially in high-dimensional spaces with numerous local minima. Recent advancements in machine learning-driven surrogate models offer a promising avenue for alleviating this computational burden. In this study, we propose a novel approach that combines the strengths of universal machine learning potentials with a Bayesian approach of the GOFEE/BEACON framework. By leveraging the comprehensive chemical knowledge encoded in pretrained universal machine learning potentials as a prior estimate of energy and forces, we enable the Gaussian process to focus solely on capturing the intricate nuances of the potential energy surface. We demonstrate the efficacy of our approach through comparative analyses across diverse systems, including periodic bulk materials, surface structures, and a cluster.