Abstract:Diabetes mellitus (DM) is a global health issue of significance that must be diagnosed as early as possible and managed well. This study presents a framework for diabetes prediction using Machine Learning (ML) models, complemented with eXplainable Artificial Intelligence (XAI) tools, to investigate both the predictive accuracy and interpretability of the predictions from ML models. Data Preprocessing is based on the Synthetic Minority Oversampling Technique (SMOTE) and feature scaling used on the Diabetes Binary Health Indicators dataset to deal with class imbalance and variability of clinical features. The ensemble model provided high accuracy, with a test accuracy of 92.50% and an ROC-AUC of 0.975. BMI, Age, General Health, Income, and Physical Activity were the most influential predictors obtained from the model explanations. The results of this study suggest that ML combined with XAI is a promising means of developing accurate and computationally transparent tools for use in healthcare systems.
Abstract:This systematic review explores the use of machine learning (ML) in predicting diabetes, focusing on datasets, algorithms, training methods, and evaluation metrics. It examines datasets like the Singapore National Diabetic Retinopathy Screening program, REPLACE-BG, National Health and Nutrition Examination Survey, and Pima Indians Diabetes Database. The review assesses the performance of ML algorithms like CNN, SVM, Logistic Regression, and XGBoost in predicting diabetes outcomes. The study emphasizes the importance of interdisciplinary collaboration and ethical considerations in ML-based diabetes prediction models.
Abstract:To provide privacy-aware software systems, it is crucial to consider privacy from the very beginning of the development. However, developers do not have the expertise and the knowledge required to embed the legal and social requirements for data protection into software systems. Objective: We present an approach to decrease privacy risks during agile software development by automatically detecting privacy-related information in the context of user story requirements, a prominent notation in agile Requirement Engineering (RE). Methods: The proposed approach combines Natural Language Processing (NLP) and linguistic resources with deep learning algorithms to identify privacy aspects into User Stories. NLP technologies are used to extract information regarding the semantic and syntactic structure of the text. This information is then processed by a pre-trained convolutional neural network, which paved the way for the implementation of a Transfer Learning technique. We evaluate the proposed approach by performing an empirical study with a dataset of 1680 user stories. Results: The experimental results show that deep learning algorithms allow to obtain better predictions than those achieved with conventional (shallow) machine learning methods. Moreover, the application of Transfer Learning allows to considerably improve the accuracy of the predictions, ca. 10%. Conclusions: Our study contributes to encourage software engineering researchers in considering the opportunities to automate privacy detection in the early phase of design, by also exploiting transfer learning models.