Abstract:Automated Decision-Making Systems (ADS) have become pervasive across various fields, activities, and occupations, to enhance performance. However, this widespread adoption introduces potential risks, including the misuse of ADS. Such misuse may manifest when ADS is employed in situations where it is unnecessary or when essential requirements, conditions, and terms are overlooked, leading to unintended consequences. This research paper presents a thorough examination of the implications, distinctions, and ethical considerations associated with digitalization, digital transformation, and the utilization of ADS in contemporary society and future contexts. Emphasis is placed on the imperative need for regulation, transparency, and ethical conduct in the deployment of ADS.
Abstract:Biomedical Natural Language Processing (NLP) tends to become cumbersome for most researchers, frequently due to the amount and heterogeneity of text to be processed. To address this challenge, the industry is continuously developing highly efficient tools and creating more flexible engineering solutions. This work presents the integration between industry data engineering solutions for efficient data processing and academic systems developed for Named Entity Recognition (LasigeUnicage\_NER) and Relation Extraction (BiOnt). Our design reflects an integration of those components with external knowledge in the form of additional training data from other datasets and biomedical ontologies. We used this pipeline in the 2022 LitCoin NLP Challenge, where our team LasigeUnicage was awarded the 7th Prize out of approximately 200 participating teams, reflecting a successful collaboration between the academia (LASIGE) and the industry (Unicage). The software supporting this work is available at \url{https://github.com/lasigeBioTM/Litcoin-Lasige_Unicage}.